Spinal commissural connections to motoneurons controlling the primate hand and wrist.
نویسندگان
چکیده
Left-right coordination is essential for locomotor movements and is partly mediated by spinal commissural systems. Such coordination is also essential for reaching and manipulation in primates, but the role of spinal commissural systems here has not been studied. We investigated commissural connectivity to motoneurons innervating forelimb muscles using intracellular recordings in acutely anesthetized macaque monkeys. In 57 of 81 motoneurons, synaptic responses (52 of 57 excitatory) were evoked after contralateral intraspinal microstimulation in the gray matter (cISMS; 300 μA maximum current intensity). Some responses (15 of 57) occurred at latencies compatible with a monosynaptic linkage, including in motoneurons projecting to intrinsic hand muscles (9 cells). Three pieces of evidence suggest that these effects reflected the action of commissural interneurons. In two cells, preceding cISMS with stimulation of the contralateral medial brainstem descending pathways facilitated the motoneuron responses, suggesting that cISMS acted on cell bodies whose excitability was increased by descending inputs. Pairing cISMS with stimulation of the contralateral corticospinal tract yielded no evidence of response occlusion in 16 cells tested, suggesting that the effects were not merely axon reflexes generated by stimulation of corticospinal axon branches, which cross the midline. Finally, stimulation of contralateral peripheral nerves evoked responses in 28 of 52 motoneurons (7 of 9 projecting to the hand). Our results demonstrate the existence of commissural neurons with access to spinal motoneurons in primate cervical spinal cord that receive inputs from the periphery as well as descending pathways. Most importantly, commissural neurons also innervate motoneurons of intrinsic hand muscles.
منابع مشابه
Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract.
Although the reticulospinal tract is a major descending motor pathway in mammals, its contribution to upper limb control in primates has received relatively little attention. Reticulospinal connections are widely assumed to be responsible for coordinated gross movements primarily of proximal muscles, whereas the corticospinal tract mediates fine movements, particularly of the hand. In this stud...
متن کاملProfiles of Motor Unit Activity Generated by a Recurrent Ann of the Primate Premotoneuronal Circuitry
A dynamic recurrent neural network composed of units with continuous activation functions were derived to simulate motoneuronal activity profiles generating bidirectional wrist movements in the monkey. The model incorporates anatomical connections of premotor neurons, i.e. neurons projecting monosynaptically to spinal motoneurons, including cortical and rubral neurons, muscle afferents and segm...
متن کاملAnodal transcranial direct current stimulation of the motor cortex induces opposite modulation of reciprocal inhibition in wrist extensor and flexor.
Transcranial direct current stimulation (tDCS) is used as a noninvasive tool to modulate brain excitability in humans. Recently, several studies have demonstrated that tDCS applied over the motor cortex also modulates spinal neural network excitability and therefore can be used to explore the corticospinal control acting on spinal neurons. Previously, we showed that reciprocal inhibition direct...
متن کاملCholinergic Partition Cells and Lamina X Neurons Induce a Muscarinic-Dependent Short-Term Potentiation of Commissural Glutamatergic Inputs in Lumbar Motoneurons
Acetylcholine and the activation of muscarinic receptors influence the activity of neural networks generating locomotor behavior in the mammalian spinal cord. Using electrical stimulations of the ventral commissure, we show that commissural muscarinic (CM) depolarizations could be induced in lumbar motoneurons. We provide a detailed electrophysiological characterization of the muscarinic recept...
متن کاملTopographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord.
A number of homeodomain transcription factors have been implicated in controlling the differentiation of various types of neurons including spinal motoneurons. Some of these proteins are also expressed in spinal interneurons, but their function is unknown. Progress in understanding the role of transcription factors in interneuronal development has been slow because the synaptic connections of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 23 شماره
صفحات -
تاریخ انتشار 2013